1,223 research outputs found

    A KDD process for discrimination discovery

    Get PDF
    The acceptance of analytical methods for discrimination discovery by practitioners and legal scholars can be only achieved if the data mining and machine learning communities will be able to provide case studies, methodological refinements, and the consolidation of a KDD process. We summarize here an approach along these directions

    Local Rule-Based Explanations of Black Box Decision Systems

    Get PDF
    The recent years have witnessed the rise of accurate but obscure decision systems which hide the logic of their internal decision processes to the users. The lack of explanations for the decisions of black box systems is a key ethical issue, and a limitation to the adoption of machine learning components in socially sensitive and safety-critical contexts. %Therefore, we need explanations that reveals the reasons why a predictor takes a certain decision. In this paper we focus on the problem of black box outcome explanation, i.e., explaining the reasons of the decision taken on a specific instance. We propose LORE, an agnostic method able to provide interpretable and faithful explanations. LORE first leans a local interpretable predictor on a synthetic neighborhood generated by a genetic algorithm. Then it derives from the logic of the local interpretable predictor a meaningful explanation consisting of: a decision rule, which explains the reasons of the decision; and a set of counterfactual rules, suggesting the changes in the instance's features that lead to a different outcome. Wide experiments show that LORE outperforms existing methods and baselines both in the quality of explanations and in the accuracy in mimicking the black box

    Data Mining for Discrimination Discovery

    Get PDF
    In the context of civil rights law, discrimination refers to unfair or unequal treatment of people based on membership to a category or a minority, without regard to individual merit. Discrimination in credit, mortgage, insurance, labor market, and education has been investigated by researchers in economics and human sciences. With the advent of automatic decision support systems, such as credit scoring systems, the ease of data collection opens several challenges to data analysts for the fight against discrimination. In this paper, we introduce the problem of discovering discrimination through data mining in a dataset of historical decision records, taken by humans or by automatic systems. We formalize the processes of direct and indirect discrimination discovery by modelling protected-by-law groups and contexts where discrimination occurs in a classification rule based syntax. Basically, classification rules extracted from the dataset allow for unveiling contexts of unlawful discrimination, where the degree of burden over protected-bylaw groups is formalized by an extension of the lift measure of a classification rule. In direct discrimination, the extracted rules can be directly mined in search of discriminatory contexts. In indirect discrimination, the mining process needs some background knowledge as a further input, e.g., census data, that combined with the extracted rules might allow for unveiling contexts of discriminatory decisions. A strategy adopted for combining extracted classification rules with background knowledge is called an inference model. In this paper, we propose two inference models and provide automatic procedures for their implementation. An empirical assessment of our results is provided on the German credit dataset and on the PKDD Discovery Challenge 1999 financial dataset

    Declarative Reasoning on Explanations Using Constraint Logic Programming

    Full text link
    Explaining opaque Machine Learning (ML) models is an increasingly relevant problem. Current explanation in AI (XAI) methods suffer several shortcomings, among others an insufficient incorporation of background knowledge, and a lack of abstraction and interactivity with the user. We propose REASONX, an explanation method based on Constraint Logic Programming (CLP). REASONX can provide declarative, interactive explanations for decision trees, which can be the ML models under analysis or global/local surrogate models of any black-box model. Users can express background or common sense knowledge using linear constraints and MILP optimization over features of factual and contrastive instances, and interact with the answer constraints at different levels of abstraction through constraint projection. We present here the architecture of REASONX, which consists of a Python layer, closer to the user, and a CLP layer. REASONX's core execution engine is a Prolog meta-program with declarative semantics in terms of logic theories.Comment: European Conference on Logics in Artificial Intelligence (JELIA 2023

    Reason to explain: Interactive contrastive explanations (REASONX)

    Full text link
    Many high-performing machine learning models are not interpretable. As they are increasingly used in decision scenarios that can critically affect individuals, it is necessary to develop tools to better understand their outputs. Popular explanation methods include contrastive explanations. However, they suffer several shortcomings, among others an insufficient incorporation of background knowledge, and a lack of interactivity. While (dialogue-like) interactivity is important to better communicate an explanation, background knowledge has the potential to significantly improve their quality, e.g., by adapting the explanation to the needs of the end-user. To close this gap, we present REASONX, an explanation tool based on Constraint Logic Programming (CLP). REASONX provides interactive contrastive explanations that can be augmented by background knowledge, and allows to operate under a setting of under-specified information, leading to increased flexibility in the provided explanations. REASONX computes factual and constrative decision rules, as well as closest constrative examples. It provides explanations for decision trees, which can be the ML models under analysis, or global/local surrogate models of any ML model. While the core part of REASONX is built on CLP, we also provide a program layer that allows to compute the explanations via Python, making the tool accessible to a wider audience. We illustrate the capability of REASONX on a synthetic data set, and on a a well-developed example in the credit domain. In both cases, we can show how REASONX can be flexibly used and tailored to the needs of the user.Comment: The 1st World Conference on eXplainable Artificial Intelligence (xAI 2023

    Meaningful Explanations of Black Box AI Decision Systems

    Get PDF
    Black box AI systems for automated decision making, often based on machine learning over (big) data, map a user's features into a class or a score without exposing the reasons why. This is problematic not only for lack of transparency, but also for possible biases inherited by the algorithms from human prejudices and collection artifacts hidden in the training data, which may lead to unfair or wrong decisions. We focus on the urgent open challenge of how to construct meaningful explanations of opaque AI/ML systems, introducing the local-to-global framework for black box explanation, articulated along three lines: (i) the language for expressing explanations in terms of logic rules, with statistical and causal interpretation; (ii) the inference of local explanations for revealing the decision rationale for a specific case, by auditing the black box in the vicinity of the target instance; (iii), the bottom-up generalization of many local explanations into simple global ones, with algorithms that optimize for quality and comprehensibility. We argue that the local-first approach opens the door to a wide variety of alternative solutions along different dimensions: a variety of data sources (relational, text, images, etc.), a variety of learning problems (multi-label classification, regression, scoring, ranking), a variety of languages for expressing meaningful explanations, a variety of means to audit a black box

    A survey of methods for explaining black box models

    Get PDF
    In recent years, many accurate decision support systems have been constructed as black boxes, that is as systems that hide their internal logic to the user. This lack of explanation constitutes both a practical and an ethical issue. The literature reports many approaches aimed at overcoming this crucial weakness, sometimes at the cost of sacrificing accuracy for interpretability. The applications in which black box decision systems can be used are various, and each approach is typically developed to provide a solution for a specific problem and, as a consequence, it explicitly or implicitly delineates its own definition of interpretability and explanation. The aim of this article is to provide a classification of the main problems addressed in the literature with respect to the notion of explanation and the type of black box system. Given a problem definition, a black box type, and a desired explanation, this survey should help the researcher to find the proposals more useful for his own work. The proposed classification of approaches to open black box models should also be useful for putting the many research open questions in perspective

    A Survey Of Methods For Explaining Black Box Models

    Get PDF
    In the last years many accurate decision support systems have been constructed as black boxes, that is as systems that hide their internal logic to the user. This lack of explanation constitutes both a practical and an ethical issue. The literature reports many approaches aimed at overcoming this crucial weakness sometimes at the cost of scarifying accuracy for interpretability. The applications in which black box decision systems can be used are various, and each approach is typically developed to provide a solution for a specific problem and, as a consequence, delineating explicitly or implicitly its own definition of interpretability and explanation. The aim of this paper is to provide a classification of the main problems addressed in the literature with respect to the notion of explanation and the type of black box system. Given a problem definition, a black box type, and a desired explanation this survey should help the researcher to find the proposals more useful for his own work. The proposed classification of approaches to open black box models should also be useful for putting the many research open questions in perspective.Comment: This work is currently under review on an international journa

    Stable and actionable explanations of black-box models through factual and counterfactual rules

    Get PDF
    Recent years have witnessed the rise of accurate but obscure classification models that hide the logic of their internal decision processes. Explaining the decision taken by a black-box classifier on a specific input instance is therefore of striking interest. We propose a local rule-based model-agnostic explanation method providing stable and actionable explanations. An explanation consists of a factual logic rule, stating the reasons for the black-box decision, and a set of actionable counterfactual logic rules, proactively suggesting the changes in the instance that lead to a different outcome. Explanations are computed from a decision tree that mimics the behavior of the black-box locally to the instance to explain. The decision tree is obtained through a bagging-like approach that favors stability and fidelity: first, an ensemble of decision trees is learned from neighborhoods of the instance under investigation; then, the ensemble is merged into a single decision tree. Neighbor instances are synthetically generated through a genetic algorithm whose fitness function is driven by the black-box behavior. Experiments show that the proposed method advances the state-of-the-art towards a comprehensive approach that successfully covers stability and actionability of factual and counterfactual explanations
    corecore